

ADVANCED REACTOR SAFEGUARDS

NDA Measurement Campaigns

PRESENTED BY

Mark Croce, mpcroce@lanl.gov

April 2023 LA-UR-23-24064

Objectives

 Enable maximum use of rapid, cost-effective nondestructive assay (NDA) to meet safeguards requirements for advanced reactors

 Directly measure NDA uncertainty to provide a comprehensive set of validated measurement capabilities for safeguards models

Current focus is extending measurements to TRISO fuels

Previous project highlights

FY20: Gamma measurement campaign at LANL

- Irradiated fuel and separation process samples received from Argonne
- Direct comparison of performance between high-purity germanium and microcalorimeter gamma spectrometers

FY21: Neutron measurement campaign at ORNL

- Irradiated fuel rod sections measured at IFEL hot cell
- Process monitoring signatures demonstrated
- Direct comparison of performance between miniHDND, ³He, and fission chamber neutron detectors

ORNL FY22-23 results to date: gamma signatures of fuel burnup and low-Z matrices

Туре	Model	Detection Volume	FWHM at 123 keV	FWHM at 662 keV
CZT	Ritec μSPEC500	500 mm ³ quasi hemispherical CZT	4.9-5.3 keV	8.1-8.4 keV
HPGe	Ortec IDM- 200-P	85 mm diameter x 30 mm length P-type HPGe	1.63- 1.70 keV	2.02-2.12 keV
HPGe	Canberra GC2518	62 mm diameter x 35.5 mm HPGe	1.03- 1.07 keV	1.45-1.47 keV
microcalori meter	SOFIA	256 superconducting transition-edge sensors	0.06- 0.11 keV	(outside of energy range)

Dissolved LWR fuels selected to represent a range of burnup and cooling time

NCED REAC
ANCED REACTOR
The same of the sa

Sample ID	Burnup (GWd/MTU)	Discharge Date (year)	Solution Mass (g)	Gamma Dose Rate(mrem/hr)	Beta Dose Rate (mrad/hr)
SR-35-2402A	65.5	1989	0.4222	16	2628
SR-1450C	65.4	2000	0.3456	18	2619
SR-215A	46.9	2010	0.2502	22	3501
SR-240A	44.7	1994	0.3754	16	3528
SR-0165A	38.8	1994	0.4375	20	3570
124240	Gamma standard solution containing Pb-210, Am-241, Cd-109, Co-57, Ce-139, Hg-203, Sn-113, Sr-85, Cs-137, Y-88, Co-60				

Simultaneous measurements

Complementary information is available from different detector types

¹³⁴Cs/¹³⁷Cs measured with HPGe

Low-energy signatures

Low-energy signatures

Additional ratios can help to separate effects of NEGUAROS OF burnup and irradiation timeline

80

Solid vs. liquid fuels

Irradiated TRISO measurements

ROUGH EGUAROS OR

- AGR compacts available at Irradiated Fuel Examination Facility
- Single particles in second floor hot cells
- Larger pieces and intact compacts in first floor hot cells

Table 10. As-irradiated compacts subjected to DLBL and IMGA.

Compost	Kernel	Temperature (°C) ^a		Burnup ^b	Fast Fluence b	
Compact	Kerner	TAVA	TA_{min}	TA_{max}	(% FIMA)	(10^{25} n/m^2)
3-1-2	UO_2	1012	903	1084	10.66	3.45
3-3-1	UO_2	1062	997	1104	10.46	3.49
2-2-1	UCO	1287	1185	1353	12.47	3.35
2-2-3	UCO	1261	1161	1335	10.80	2.99
5-2-3	UCO	1108	1003	1184	10.42	3.00
5-3-3	UCO	1093	986	1172	10.07	2.91
5-4-2	UCO	1071	927	1168	12.03	3.14
6-2-3	UCO	1095	1012	1157	8.22	2.30
6-3-3	UCO	1060	970	1134	7.46	2.14
6-4-1	UCO	1018	891	1106	9.24	2.20

Planned location (photo of FY21 neutron measurements)

a. Hawkes 2014a.

b. Sterbentz 2014.

INL measurement campaign

- Microcalorimeter spectrometer now commissioned at Analytical Laboratory through MPACT
- Single TRISO particles or dissolved TRISO fuel with additional irradiation parameters
- Emphasis on freshly irradiated materials from AGR

Summary

- Completed measurements of dissolved LWR fuel burnup series
 - ^{154/155}Eu and ^{241/243}Am can complement ^{134/137}Cs for better burnup and irradiation history characterization
- Irradiated TRISO fuel measurements planned for May and June

